787 research outputs found

    Fuzzy Logic and Intelligent Agents: Towards the Next Step of Capital Budgeting Decision Support

    Get PDF
    The economic life of large investments is long and thus necessitates constant dynamic managerial actions. To be able to act in an optimal way in the dynamic management of large investments managers need the support of advanced analytical tools. They need to have constant access to information about the real time situation of the investment, as well as, access to up-to-date information about changes in the business environment. What is more challenging, they need to integrate qualitative information into quantitative analysis process, and to integrate foresight information into the capital budgeting process. In this paper we will look at how emerging soft computing technologies, specifically fuzzy logic and intelligent agents, will help to provide a better support in such a context and then to frame a support system that will make an integrated application of the aforementioned technologies. We will first develop a holistic framework for an agent-facilitated capital budgeting system using a fuzzy real option approach. We will then discuss how intelligent agents can be applied to collect decision information, both qualitative and quantitative, and to facilitate the integration of foresight information into capital budgeting process. Integration of qualitative information into quantitative analysis process will be discussed. Methods for integrating qualitative and quantitative information into fuzzy numbers, as well as, methods for using the fuzzy numbers in capital budgeting will be presented. A specification of how the agents can be constructed is elaborated.Intelligent Agents, Fuzzy Sets, Capital Budgeting, Real Options, DSS

    Master of Science

    Get PDF
    thesisA one-million ton hot iron per year suspension ironmaking plant has been simulated with the consideration of activity coefficient of FeO in slag by using Metsim simulation software package for calculating material balance and energy balance in this thesis. Mathematical models found in the literature for calculating the activity coefficient of FeO in slag were first selected, reviewed and assessed. Park and Lee's regular solution model was evaluated to be the most appropriate model for this study, and was integrated with the Metsim simulation software for the simulation of the suspension ironmaking process. Six suspension ironmaking processes were simulated: one-step process with pure H2, two-step process with pure H2, one-step reformerless process with natural gas, two-step reformerless process with natural gas, one-step process with SMR-H2 and one-step process with SMR-syngas. The simulated results show that the suspension ironmaking processes with pure H2 and reformerless natural gas are more energy efficient than conventional blast furnace ironmaking process, mainly due to the direct use of iron ore concentrate and no need for coke in the suspension ironmaking processes. The reformerless suspension ironmaking process with natural gas would consume 30 - 41% less energy than the average blast furnace ironmaking process. On the basis of material balance and energy balance, the economical feasibility of the suspension ironmaking process was analyzed. Capital cost, operating cost, CO2 credit and net present value were used in analyzing economic feasibility of the suspension ironmaking process. The analyzed results show that pure H2 process would require the least capital cost and receive the largest CO2 credit, but need the highest operating cost. Even without considering CO2 credit, except pure H2 process, all other suspension ironmaking processes would be profitable with positive NPV values. With sufficient CO2 credit, all suspension ironmaking processes simulated would be profitable, among which reformerless natural gas would return the best economics. Capital cost for the one-million ton per year suspension ironmakng plant with reformerless natural gas would be 414millionforone−stepand414 million for one-step and 537 million for two-step, operating cost 429/tHIand429/tHI and 418/tHI, and NPV 333/tHIand333/tHI and 177/tHI without CO2 credit and 813/tHIand813/tHI and 795/tHI with $100/t CO2 credit, respectively. Economic sensitivity was also analyzed. Lower fuel price, lower operating cost, higher hot iron price and larger CO2 credit would all help improve the economics of the suspension ironmaking process

    Agent Based Environmental Scanning System: Impacts on Managers and Their Strategic Scanning Activities

    Get PDF
    In this paper we propose a framework for analyzing the impacts of scanning support technologies. The framework is applied to examine the impacts of an agent-based environmental scanning system on managers, as users, and on their scanning process and outcomes. We develop speculations on the system’s impacts and contrast them with empirical result

    The Role of Waste Glass Powder During the Hydration Process of Composite Cementitious Materials

    Get PDF
    The role of waste glass powder (GP) during the hydration process of composite cementitious materials was investigated by using mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The compressive strength was also tested. The results indicate that the chemical activity of GP is low. But the pozzolanic reactivity of GP greatly improves with its fineness and the elevated curing temperature, which contributes to improving the mechanical strength. The hydration process of composite cementitious material containing GP is similar to that of pure cement. With the increase of GP content in the composite cement, the occurring time of second exothermic improves, but the value of second exothermic peak and the cumulative hydration heat reduce. The characteristic pore size of pastes containing GP decreases over curing age, which significantly improves their strength. GP does not modify the type of hydration products of composite cementitious material. The microstructure of hardened pastes containing GP is dense due to the generation of C-S-H gel with a low Ca/Si ratio. There is a reaction ring along GP with high fineness, which can enhance the interfacial transition zone to avoid ASR
    • 

    corecore